Projects
Current public funded projects
-
Electronic-Photonic Integrated Circuits for Wireless THz Communication
(Third Party Funds Single)
Term: since 15. February 2024
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)This project targets research on a scalable THz communication system with a large number of elements towards a massive phased-array approach. Such a solution poses a variety of different challenges that need to be investigated and overcome. Some of these are:
1. Design of sufficiently broadband phased-array components to utilize the available large bandwidth around 300 GHz
2. Flexible and low loss broadband baseband signal distribution for many channels
3. Power-efficient generation and coherent distribution of the low phase-noise THz local oscillator (LO) carrier frequency across massive amounts of channels
4. Efficient parallel multiplexed circuit concepts with a reduced number of interfaces
5. Design of large-scale, high-complexity optical and electrical systems
6. Modular circuit implementations with a high level of integration and simultaneous high yield for reliable massive THz systems
The project aims to address the above challenges based on a novel interdisciplinary architecture that combines optical and high-frequency electrical devices and building blocks in a coherent process utilizing an advanced version of an electronic photonic integrated circuit (EPIC) technology platform.
-
Open-Source-Entwurfs- und Simulationsumgebung für hochintegrierte 2.5D/3D-Chipsysteme
(Third Party Funds Group – Overall project)
Term: since 1. May 2024
Funding source: BMBF / VerbundprojektMiniaturized mechatronic and autonomous systems, suchas automotive control units, electronic medical devices or wearables, integratea large number of different functional submodules and require increasingnetworking, a compact form factor and decentralized signal processing, e.g.through artificial intelligence. This requires the co-integration of manymonolithic integrated circuits in a highly complex package, taking into accountthermal, electromagnetic and geometric boundary conditions, as well as globaloptimization of partitioning at the functional level.
The aim of the “PASSIONATE” researchproject is therefore to develop a free 3D design environment for packages andsystems-in-package. The project thus complements other projects for thedevelopment of open-source tools for the design of integrated circuits byadding an environment for modeling spatial geometries and methods forsimulating multiphysical, in particular thermal and electromagnetic properties.This closes a significant gap between open-source tools at chip level andopen-source PCB software in order to cover the entire value chain with freetools. The basis of the new 3Ddesign and simulation environment is a spatially oriented computer-aided design(3D-MCAD) system, which is extended by interfaces to the upstream chip designtoolchain (system, logic and circuit development) and the import of geometries.Among other things, this enables feature-based, parametric modeling of variousassembly and connection technologies.
The quality of the designed tool and thesimulation techniques is validated by comparison with commercial software andfinally by the realization of two physical demonstrators with a focus onhigh-frequency technology and digital system design.
-
Synthetic Molecular Communications Across Different Scales: From Theory to Experiments
(Third Party Funds Group – Overall project)
Term: since 1. June 2024
Funding source: DFG / Graduiertenkolleg (GRK)
URL: https://www.symocads.research.fau.eu/https://www.idc.tf.fau.de/neues-graduiertenkolleg-symocads/
-
Dynamik und Steuerung superparamagnetischer Nanopartikel in einfachen und verzweigten Gefäßen: Simulation & Experiment (DyNano)
(Third Party Funds Single)
Term: since 1. October 2023
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)Magnetic Drug Targeting unter Einsatz von superparamagnetischen Eisenoxid-Nanopartikeln (SPIONs) ist eine wirksame Methode, um in der Krebstherapie die Wirkstoffapplikation im Tumorgewebe zu steigern, bei gleichzeitiger Reduktion der Gesamtwirkstoffmenge und der mit der Therapie einhergehenden Nebenwirkungen. Während die Wirksamkeit des Ansatzes bereits in Studien nachgewiesen werden konnte, fehlen allerdings bislang Ansätze, um diese Methode an den jeweiligen Behandlungsfall anzupassen und zu optimieren. Ziel dieses Antrags ist es daher, die Grundlagen für eine derartige patientenindividuelle Optimierung zu legen: Vergleichbar dem bereits erfolgreich praktizierten Procedere in der Strahlentherapie sollen perspektivisch vor der Anwendung der Therapie auf Basis des lokalen Gefäßsystems des Patienten und der Eigenschaften des Tumors die verwendeten Magnetfelder derart angepasst werden, dass der Anteil des Wirkstoffs, der in das Tumorgewebe gelangt, maximiert wird. Zu diesem Zweck soll im beantragten Projekt ein physiologisch-physikalisches Modell der Bewegung und Magnetfeld-basierten Steuerung von SPIONs entwickelt, als Finite-Elemente-Modell implementiert und experimentell validiert werden. Dieses soll es erlauben, die zeitlich variable Feldstärke und Position eines oder mehrerer Elektromagnete in Hinblick auf die Partikelkonzentration in einem Zielgebiet zu optimieren. Im Projekt sollen dabei die Steuerung bei einfach und mehrfach verzweigten Kanalsystemen ebenso wie beim Übertritt aus dem Gefäß in das umliegende Gewebe betrachtet werden. Damit soll die Basis für eine spätere Übertragung des Optimierungsansatzes auf gegebene Gefäß- und Tumormodelle in der klinischen Anwendung gelegt werden. Die mathematisch-algorithmische Entwicklung des Simulations- und Optimierungstools obliegt dabei dem Lehrstuhl für Angewandte Mathematik III (AM3) der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU). Im gesamten Projektverlauf soll dieses Modell experimentell validiert und auf Basis von Versuchen erweitert werden. Die zugehörigen Versuchsaufbauten werden gemeinsam vom Lehrstuhl für Technische Elektronik (LTE) der FAU und der Sektion für Experimentelle Onkologie und Nanomedizin (SEON) des Universitätsklinikums Erlangen entwickelt und betreut. Dabei ist der LTE für die Mess- und Steueraufbauten verantwortlich, die SEON für die Nanopartikel und die Gefäßmodelle inkl. Untersuchungen an menschlichen Nabelschnurarterien.
-
Quantum Measurement and Control for the enablement of quantum computing and quantum sensing
(Third Party Funds Single)
Term: since 1. January 2023
Funding source: Bayerisches Staatsministerium für Wissenschaft und Kunst (StMWK) (seit 2018)
-
Elektronik mit neuartigen Materialien für Edge-Computing in Mobilfunknetzen
(Third Party Funds Group – Overall project)
Term: since 1. July 2022
Funding source: BMBF / VerbundprojektMotivationThe increasing number of networked devices and sensors, the "Internet of Things" (IoT), enables diverse and new applications. However, it is also generating a rapidly growing volume of data. Processing data at its point of origin (edge computing) helps to deal with it efficiently. Edge computing strengthens the functionality, sustainability, trustworthiness and cost-effectiveness of electronic applications through the use of artificial intelligence and networking. The goal of the OCTOPUS projects is to provide application-specific, highly innovative electronics to unlock these benefits.
Goals and strategy
The aim of the project is to create the technological basis for an AI-supported, flexible, efficient and scalable multi-access edge cloud (MEC) with which future mobile networks can be realized. This should have low latency, high frequency agility and high data rates. To this end, analog and digital circuits will be designed, built and verified to linearize the radio signals to be transmitted using a centralized AI-powered algorithm. New approaches will be used to achieve the energy efficiency, frequency flexibility, bandwidth, scalability and cost efficiency requirements of the system. The focus is on new power amplifier architectures based on gallium nitride (GaN) and a new overall architecture that reduces the complexity of the MEC.
Innovations and perspectives
The MEC can be used to build powerful and efficient mobile networks that support complex applications, for example from industry or mobility. A special special focus is on the use of particularly energy-efficient technologies in order to promote not only digital progress as well as promoting the European Green Deal.
-
Flexible Elektronisch-Photonisch Integrierte Sensor Plattform II [EPIC-Sense II]
(Third Party Funds Group – Sub project)
Overall project: Electronic-Photonic Integrated Systems for Ultrafast Signal Processing
Term: since 1. September 2022
Funding source: DFG / Schwerpunktprogramm (SPP)This proposal aims to explore a scalable, two-stage electronic-photonic MIMO radar system in the millimeter-wave range. In phase I of SPP 2111, the coherent optical distribution of the local oscillator signal was already addressed as well as the broadband integration of an electronic-photonic FMCW radar front-end. The vision for Phase II of SPP 2111 is the extension of a monolithically integrated electronic-photonic FMCW radar system by a new frequency-division multiplexing approach, which is realized by a new additional optical data-bus transmitting a high data rate coding scheme. With the help of this additional coding, a large amount of coherent 2x2 radar modules can be differentiated, while concentrating the computationally intensive coding in a central node. Especially for the electro-optical interfaces, intensive research into new technologies of optical modulation methods and components is necessary in order to meet the challenging bandwidth requirements. -
Industrialisierbare Schlüsseltechnologien für energieeffiziente Tbit-Transceiver in 6G Mobilfunksystemen
(Third Party Funds Group – Overall project)
Term: since 1. October 2022
Funding source: BMBF / VerbundprojektMOTIVATION
Sixth-generationmobile communications (6G) will enable entirely new application scenarios inindustry, medical technology and everyday life. This will be accompanied by newand higher requirements for latency, the transmittable data rate, spatialresolution, as well as data processing and energy management of thecommunication systems, which cannot be met at present. A promisingtechnological solution is offered by the development of new radio frequenciesup to the terahertz (THz) range. This can enable extremely high data rates andhigh-resolution sensing. For the realization of 6G, it is therefore importantto develop energy-efficient THz receivers and transmitters with controllabledirectional characteristics, which have high signal quality and bandwidth.Among other things, optoelectronic technologies open up promising approaches tosolutions here.
OBJECTIVES AND APPROACH
In the project"Industrializable key technologies for energy-efficient Tbit transceiversin 6G mobile radio systems - ESSENCE-6GM", solutions are being researchedto realize transmit and receive modules for the frequency range just belowterahertz radiation (sub-THz), which will be a critical component of future 6Gsystems. Economic efficiency and environmental compatibility are the toppriorities for the technical implementation: the solutions must becost-effective to implement in future industrial series productions andsignificantly more energy-efficient in operation compared to today's solutions.The project specifically addresses the critical weak points of today'stransmitter and receiver systems: By introducing new concepts in analog anddigital conversion, circuitry and module integration, transmitter and receiverunits for sub-THz systems can be made more energy efficient and highperformance. At the end of the project, it is planned to demonstrate amulti-antenna system capable of transmitting data rates of up to one terabitper second beyond 10 meters in selected usage scenarios.
INNOVATIONS ANDPERSPECTIVES
The Essence-6GMproject is developing components that enable high-performance transmission inthe sub-THz range with high energy efficiency. Overall, the project is helpingto ensure that Germany plays a leading role in shaping 6G standards and thatthe share of key components for 6G systems manufactured in Europe is increased.This is an essential contribution to strengthening the technologicalsovereignty of Germany and Europe.
-
Intelligentes robustes 320 GHz Radar-Edge-Sensornetzwerk
(Third Party Funds Group – Overall project)
Term: since 1. July 2022
Funding source: BMBF / VerbundprojektMOTIVATION
The increasing number of networked devices and sensors, the "Internet of Things" (IoT), enables diverse and new applications. However, it also ensures a rapidly growing amount of data. Processing data at its point of origin (edge computing) helps to deal with it efficiently. Edge computing strengthens the functionality, sustainability, trustworthiness and cost-effectiveness of electronic applications through the use of artificial intelligence and networking. The goal of the OCTOPUS projects is to provide application-specific highly innovative electronics to unlock these benefits.
OBJECTIVES AND APPROACH
The goal of the project is to develop radar sensors that can act as artificial sensory organs. The measurement frequency of 320 GHz enables high resolution. It is achieved by a new 90 nm BiCMOS semiconductor fabrication process. Basic circuitry, antenna concepts, and a 160 GHz communication interface for the radar modules are being explored. Attached to objects in large numbers and networked with each other, the sensors form a protective shell that can perceive its environment with the help of intelligent algorithms. The sensor data is distributed and processed in an energy-efficient manner both in the radar modules and in a central computing system. Data compression methods are also being developed for efficient data exchange. The functionality is being tested using automotive scenarios.
INNOVATIONS AND PERSPECTIVES
The protective shell represents a "radar skin" as an artificial sensory organ and holds high potential for future autonomously acting systems such as unmanned vehicles, drones, industrial or household robots. This will allow them to move around in the human environment and interact safely with humans as well as with other autonomous systems.
-
MQV Superconducting Qubits Quantum Computer Demonstrators
(Third Party Funds Single)
Term: since 1. January 2022
Funding source: Bundesministerium für Bildung und Forschung (BMBF)Motivation
Today, quantum computers are considered to be the computing machines of the future. They use so-called qubits instead of the conventional bits of classical computer technology. The special properties of these qubits allow the quantum computer to assume all states that can be represented with the qubits simultaneously, while conventional computers can only work with one of the combinations that can be represented by the available bits per computing step. Quantum computers can thus be used to solve tasks that conventional computers fail at. Processes at the molecular level can be simulated so that, for example, the mode of action of new active ingredients can be predicted for the pharmaceutical industry. Likewise, quantum computers can find ways to develop highly efficient battery storage or solve complex problems in traffic management.
Objectives and approach
The present collaborative project aims to build the demonstrator of a quantum computer based on superconducting circuits, as well as the peripherals necessary to interface the quantum computer to conventional computer systems. The work includes research into microwave circuits to control the qubits, research into integration methods for superconducting circuits, and extends to the development of customized compilers and runtime environments for the quantum computer. The associated quantum processor is expected to be able to compute with up to 100 qubits, and would thus be capable of representing ten to the power of thirty states simultaneously (which is about ten billion times the estimated number of stars in the universe).
Innovation and perspectives
The goal of the work is, among other things, to ensure reliable operation of such a quantum computer and, on the other hand, to create the periphery to make the computing power of this computer available to a broad group of users via cloud computing.
-
Verbundprojekt: Komonenten und RU Charakterisierung - 6G-TERAKOM-
(Third Party Funds Group – Sub project)
Overall project: Verbundprojekt: Komonenten und RU Charakterisierung - 6G-TERAKOM-
Term: since 15. October 2022
Funding source: BMBF / Verbundprojekt
-
6G for Society and Sustainability
(Third Party Funds Group – Sub project)
Overall project: 6G Platform Germany
Term: since 1. August 2021
Funding source: Bundesministerium für Bildung und Forschung (BMBF)
URL: https://www.open6ghub.de/The Open6GHub will contribute to the development of an overall 6G architecture, but also end-to-end solutions in the following, but not limited to, areas: advanced network topologies with highly agile organic networking, security and resilience, THz and photonic transmission methods, sensor functionalities in the network and their intelligent use, as well as processing and application-specific radio protocols.
Research at FAU is conducted at the chairs of Prof. Franchi (ESCS), Prof. Weigel (LTE) and Prof. Vossiek (LHFT). At LTE research is focused on Joint-Communications-and-Sensing-Technologies and their application in resilient 6G campus networks, in close collaboration with ESCS and LHFT. Furthermore LTE designs integrated 140 GHz Device-to-Device communication chips.
The focus of ESCS is on JCAS, adaptive RAN architectures, protocol design, and waveform design for 6G. Additionally, ESCS explores topics of resilience-by-design and security-by-design.
-
6G-Konzepte für nachhalte Smart Cities, vernetzte Mobilität und Campusnetze
(Third Party Funds Group – Sub project)
Overall project: Plattform für zukünftige Kommunikationstechnologien und 6G (6G Plattform)
Term: since 1. October 2021
Funding source: Bundesministerium für Bildung und Forschung (BMBF) -
Empatho-Kinaesthetic Sensor Technology
(Third Party Funds Group – Overall project)
Term: since 1. July 2021
Funding source: DFG / Sonderforschungsbereich / Transregio (SFB / TRR)
URL: https://empkins.de/The proposed CRC “Empathokinaesthetic Sensor Technology” (EmpkinS) will investigate novel radar, wireless, depth camera, and photonics based sensor technologies as well as body function models and algorithms. The primary objective of EmpkinS is to capture human motion parameters remotely with wave-based sensors to enable the identification and analysis of physiological and behavioural states and body functions. To this end, EmpkinS aims to develop sensor technologies and facilitate the collection of motion data for the human body. Based on this data of hitherto unknown quantity and quality, EmpkinS will lead to unprecedented new insights regarding biomechanical, medical, and psychophysiological body function models and mechanisms of action as well as their interdependencies.The main focus of EmpkinS is on capturing human motion parameters at the macroscopic level (the human body or segments thereof and the cardiopulmonary function) and at the microscopic level (facial expressions and fasciculations). The acquired data are captured remotely in a minimally disturbing and non-invasive manner and with very high resolution. The physiological and behavioural states underlying the motion pattern are then reconstructed algorithmically from this data, using biomechanical, neuromotor, and psychomotor body function models. The sensors, body function models, and the inversion of mechanisms of action establish a link between the internal biomedical body layers and the outer biomedical technology layers. Research into this link is highly innovative, extraordinarily complex, and many of its facets have not been investigated so far.To address the numerous and multifaceted research challenges, the EmpkinS CRC is designed as an interdisciplinary research programme. The research programme is coherently aligned along the sensor chain from the primary sensor technology (Research Area A) over signal and data processing (Research Areas B and C) and the associated modelling of the internal body functions and processes (Research Areas C and D) to the psychological and medical interpretation of the sensor data (Research Area D). Ethics research (Research Area E) is an integral part of the research programme to ensure responsible research and ethical use of EmpkinS technology.The proposed twelve-year EmpkinS research programme will develop novel methodologies and technologies that will generate cutting-edge knowledge to link biomedical processes inside the human body with the information captured outside the body by wireless and microwave sensor technology. With this quantum leap in medical technology, EmpkinS will pave the way for completely new "digital", patient-centred diagnosis and therapeutic options in medicine and psychology.Medical technology is a research focus with flagship character in the greater Erlangen-Nürnberg area. This outstanding background along with the extensive preparatory work of the involved researchers form the basis and backbone of EmpkinS. -
Highly integrated localizable EMG beacon
(Third Party Funds Group – Sub project)
Overall project: Empathokinästhetische Sensorik - Sensortechniken und Datenanalyseverfahren zur empathokinästhetischen Modellbildung und Zustandsbestimmung (EmpkinS)
Term: since 1. January 2021
Funding source: DFG / Sonderforschungsbereich (SFB)
URL: https://www.empkins.de/In this project, localizable electromyography (EMG) radio transponders are to be designed and realized in order to be able to acquire surface EMG data synchronously with highly accurate radio localization in real time for the first time. For this purpose, a 61-GHz transceiver in CMOS technology will be designed, which emits the phase-coherent signal required for the holographic radiolocation method. At the same time, the transceiver must be designed to be extremely energy-efficient. In a further step, the transceiver is to be integrated into an EMG sensor platform, which is to be evaluated in test series on subjects, e.g. on the face or legs, for the analysis of facial expressions or gait.
-
Munich Quantum Valley
(Third Party Funds Single)
Term: since 1. October 2021
Funding source: Bayerisches Staatsministerium für Wissenschaft und Kunst (StMWK) (seit 2018)Quantum information processing (QIP), and generally the useof quantum technologies (QT) for communication, sensing, metrology andcomputational purposes, has become a key technology during the last decade forthe advancement of science and technology. The capability to prepare andmanipulate quantum states and to generate superpositions and entanglement ondemand has led to the development of measurement and computational procedures,which promise to perform well beyond classical tools. During the last twodecades, the physics of quantum information (QI) has been developed inlaboratories and routes to quantum devices with unsurpassed features have beendemonstrated [ARU19]. In particular, it has been shown that quantum computing(QC) promises unprecedented computational power for the solution of some hardproblems, especially when quantum features are involved, as for example, inchemical calculations and for quantum simulations of many-body problems as arefrequently encountered in material sciences. Moreover, quantum proceduresenhance optimization routines and can be used for the efficient solution ofsome hard mathematical problems, such as factoring.
During the last decade,laboratory realizations of quantum computers have demonstrated their unique computationalcapabilities and spawned the efforts to make such devices available for a wideruse in industrial applications. IBM has made quantum computers available viacloud access and attracted a huge number of users and customers who want to getthemselves acquainted with the new technology. Google has demonstrated whatthey coined “quantum supremacy”, i.e., it shows a large speedup compared withclassical computational power. While the hitherto demonstrated algorithm(random circuits) is useless for practical purposes, it clearly demonstratedthe quantum advantage that can be achieved. Such a computational potential ledto the establishment of hundreds of startups, both hardware and softwareoriented, in search of realizing scalable quantum devices and algorithms. Whilemuch of the foundations and many demonstrated quantum features were obtained inEurope, most of these newly founded companies were established in the US,Canada, in Australia, some in the UK, the Netherlands and elsewhere in Europe,but very few in Germany. Realizing the potential advantages of QC and thegeneral-purpose use of QT and pertaining devices, several initiatives arecurrently forming to establish QC and QT in Germany and, especially, inBavaria. Expertise in QC and QT will enable advanced technologies and ensurethe leading role of the German and the Bavarian industry for decades to come.
MQV – the Munich Quantum Valley initiative intends to combine the profoundquantum knowledge of the research institutes and universities in Bavaria withexpert technologies of companies and industry to develop and provide QCtechnology, and more generally, expertise in QT. New startup companies areexpected to be established in the course of the proposed work, enhancing thetechnology environment and making Bavaria increasingly attractive for researchand development. Moreover, the initiative aims at educating a new generation ofengineers with a quantum technology background and quantum physicists withsolid engineering expertise to establish the basis for new quantum applicationsand quantum devices as a resource for shaping the future.
Already finished projects
-
Erforschung und Evaluation von organischen Laminaten für Verbindungskonzepte in Multi-Chip-Modulen
(Third Party Funds Single)
Term: 1. January 2022 - 31. December 2024
Funding source: Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie (StMWi) (seit 2018)Innovative, smart electronic systems usually only become intelligent, i.e. smart, through networking and the use of AI. On the one hand, this entails the need for a much higher-performance connection of the components within the system, and on the other hand for high-performance networking of a large number of such systems. While the connection of the computing unit (DSP, FPGA or similar) to its periphery is crucial for the first aspect, a very high-performance connection structure between the computing unit and the interface to the transport network is particularly necessary for high-rate networking. Here, the interface often implements the transition from the electrical domain to optical transmission. In order to make the required data rates between the computing unit and the interface physically possible, new construction and connection technologies are required, together with new efficient connection structures. In particular, the enormous analog bandwidth of 110GHz required for this calls for new innovative approaches here.
Modern manufacturing technologies such as organic multi-chip modules (MCM) allow the necessary high degree of integration of a wide variety of components on a common system level. For many application areas, such as mobile communications and optical data communications, the connection of digital signal processors (DSPs) and memory blocks or interface components on a common carrier material (interposer) represents a decisive advantage. This is being investigated as part of the project. -
Terahertz Digital Chess-Board-Modulated Spread-Spectrum System for Radar and Communication Comprising 200 GHz Bandwidth
(Third Party Funds Group – Sub project)
Overall project: INtegrated TERahErtz sySTems Enabling Novel Functionality (INTEREST)
Term: since 1. January 2022
Funding source: DFG / Schwerpunktprogramm (SPP)TIEMPO proposes the realization of an I/Q transceiver chipset for spread-spectrum digital noise radar operating in the frequency range from 220 GHz to 420 GHz. This corresponds to a record bandwidth of 200 GHz. In this project we innovate on the idea of the frequency modulated continuous wave (FMCW) comb radar, by proposing a concept that can be viewed as a digital radar counterpart to a frequency comb radar. To achieve the extremely wide bandwidth we propose a novel system architecture implementing a “chess-board spectrum division”. Thanks to an elegant system level solution, a single oscillator at a fixed frequency is sufficient to generate five local oscillator (LO) carrier frequencies to cover the entire bandwidth. Furthermore, due to the high-speed I/Q mixed-signal components in combination with the “chess-board” concept, we reduce the number of required transmit/receive channels by two. This architecture can also be used for communication systems, as the digital sequence is generated externally.This extremely wide bandwidth imposes difficult challenges at the circuit design level, which is the main focus of this proposal: (1) I/Q data converters with 8-bit resolution, 20 GHz bandwidth, and 40 Gbps data-rate; (2) I/Q transmitter and receiver operating above 400 GHz; (3) LO signal generation to cover the entire bandwidth; (4) on-chip antennas with 200 GHz bandwidth and high efficiency. These operation frequencies are very close or above fmax of the technology intended for experimental validation, which is the 22 nm FD-SOI (Fully-Depleted Silicon-On-Insulator) CMOS process of Globalfoundries. This requires novel circuit and system level approaches to circumvent technology limitations. To our knowledge, this is the first digital spread-spectrum radar transceiver concept proposed in this frequency range, and the first operating over a bandwidth of 200 GHz.
-
Embedded Machine Learning
(Third Party Funds Single)
Term: 1. October 2021 - 30. September 2024
Funding source: Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie (StMWi) (seit 2018)The aim of this project is to design and build a machine learning system that is networked across different levels, from sensors to the cloud, and optimised as a whole. The advantages of such a system can be optimally demonstrated by using the latest radar sensor technology. For this purpose, novel ML signal processing algorithms for person recognition are developed in order to realise high-resolution environment detection for autonomous transport vehicles. The focus for the system should be on modularity, reusability, flexibility and scalability, as well as the closest possible interlocking of the subcomponents.
-
Modellierung, Optimierung, und Hardwaredesign von durch intelligente reflektierende Oberflächen unterstützten drahtlosen Kommunikationssystemen
(Third Party Funds Single)
Term: 1. September 2021 - 31. August 2024
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
-
5G Netzoptimierung durch effiziente PIM-Analyse
(Third Party Funds Single)
Term: 1. August 2020 - 31. July 2023
Funding source: Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie (StMWi) (seit 2018)
URL: https://www.stmwi.bayern.de/bayern-spricht-ueber-5g/messen-fuer-schnelles-netz/Der von der bayerischen Staatsregierung forcierte Breitbandausbau der bestehenden Mobilfunknetze, aber auch der geplante Aufbau ganz neuer Netzinfrastrukturen, wie sie im Rahmen des autonomen Fahrens und der fortschreitenden Industrieautomation (Industrie 4.0) benötigt werden, wird in Zukunft zwangsläufig zu einer immer dichteren Nutzung des verfügbaren Frequenzspektrums sowie zur Reallokation zusätzlicher
Frequenzressourcen (Beispiel Digitale Dividende I und II) führen. Um die, für die 5G Netze geforderte, hohe Verfügbarkeit und Zuverlässigkeit bei gleichzeitig stark steigenden Teilnehmerzahlen (IoT) zu gewährleisten, rücken die Eigenintermodulation und Störfestigkeit der Netzinfrastrukturkomponenten immer stärker in den Fokus des Interesses. Dabei spielt u.a. auch die sog. passive Intermodulation (PIM), die an den passiven Komponenten der Netzinfrastruktur, wie Kabeln, Konnektoren, Filtern und Antennen auftritt, eine immer größere Rolle. Das Projekt soll eine innovative Gerätearchitektur für PIM-Analysatoren erforschen, die eine Abdeckung einer möglichst großen Anzahl von 5G Frequenzbändern mit nur einem Gerät erlaubt und zudem flexibel weitere, ggf. zukünftig den 5G Netzen zugeteilte, Bänder abdecken kann. Sowohl für die PIM Messtechnik als auch für die allgemeine EMV Messtechnik, werden hohe Signalleistungen
benötigt, die durch Leistungsverstärker aufwendig erzeugt werden müssen. Diese Leistungsverstärker bestimmen maßgeblich die Kosten sowie die erreichbare Performanz der Messsysteme. Aktuell am Markt verfügbare Verstärkerlösungen sind dabei entweder in ihrer Bandbreite stark limitiert, sodass Messsysteme nur bandspezifisch angeboten werden können, was den Anforderungen eines zunehmenden Breitbandausbaus widerspricht, oder weisen eine so geringe Energieeffizienz auf, dass sie für batteriebetriebene Feldtestanwendungen nicht in Frage kommen.Die Antragsteller verfolgen mit dem angestrebten Verbundprojekt das Ziel, sehr breitbandige und zugleich energieeffiziente sowie lineare Hochfrequenzleistungsverstärkermodule zu analysieren und den Einsatz in PIM Analysatoren zu evaluieren. Die Verbundpartner beabsichtigen mit dem beantragten Projekt die Grundlagen für eine neue Messgerätegeneration zu legen, die eine erheblich effizientere Lokalisierung von PIM Störungen in 5G Netzen erlaubt und damit den Netzbetreibern als wichtiges Tool für die Sicherstellung einer durchgehenden
Service-Qualität ihrer 5G-Netze dient. Nicht zuletzt böte dies für die beteiligten Firmen eine große Chance, ihre Marktposition auf dem Weltmarkt gemeinsam zu verbessern und zusammen mit der FAU-Erlangen-Nürnberg Innovationen im Mobilfunk an vorderster Front mit zu treiben. -
Automatisierte Lokalisierung von Mobiltelefonen verschütteter Personen
(Third Party Funds Group – Sub project)
Overall project: Sensor Systeme zur Lokalisierung von verschütteten Personen in eingestürzten Gebäuden (SORTIE)
Term: 1. January 2020 - 31. December 2022
Funding source: Bundesministerium für Bildung und Forschung (BMBF) -
Electronic Circuits for Piezoelectric Energy Harvesting and Sensor Array Systems
(Third Party Funds Group – Sub project)
Overall project: GRK 2495: Energy Conversion Systems - from materials to devices
Term: 1. July 2020 - 30. June 2024
Funding source: DFG / Graduiertenkolleg (GRK)
URL: https://www.igk2495.fau.de/projects/project-a-electronic-circuits-for-piezoelectric-arrays/Multiport and multimodal energy harvesting array systems require further circuit advancements. Wearables for health monitoring are an excellent energy harvesting example at raising interest. Further applications: smart city, building/bridge structure and environmental monitoring- Should be energy autonomous for easy handling, no charger, always ready to go for 24/7 use
- SoA: Only single port harvesters! Require multiport harvesters for multiple asynchronous energy sources!
- Multimodal harvesting (pressure, solar, thermal,…) and arrays increase availability of energy
- Energy harvesting at high conversion efficiency needed
- Provision of energy for: (i) local sensor acquisition, (ii) local data processing, and (iii) Wireless connectivity, WAN needs more energy than BAN
- Wireless connectivity BAN (Body Area Network, e.g. Bluetooth) replaced by WAN (Wide Area Network, cellular IoT)The primary research goal is the development of improved circuit design for multiport harvesters dealing with asynchronous energy sources in a piezo array
- Can the piezo elements be simultaneously used as sensors and energy providers?
- How to deal with asynchronous energy sources?
- How to ensure high availability and stability of energy?
- How to increase conversion efficiency? -
Elektronenpulse Modellieren – Entwicklung und Design eines Steuergerätes für Elektronenkanonen
(Third Party Funds Single)
Term: 1. October 2020 - 30. September 2022
Funding source: Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie (StMWi) (seit 2018) -
Frequenzselektive FM-Empfängerarchitekturen zur Steigerung der Sicherheit in der zivilen Luftfahrt
(Third Party Funds Single)
Term: 1. January 2020 - 30. June 2023
Funding source: Bundesministerium für Wirtschaft und Technologie (BMWi)Passive radar technology represents a promising addition to conventionalradar systems. With increasing demands from economy and politics to completelyuse the limited spectrum of the frequency bands limited for telecommunicationsand location, the interest in this technology is increasing.
The aim of this research project is to establish the technology of locationusing passive radar technology in civil air traffic control in Germany and to opennew areas of application.
To improve the detection performance, various options for setting up afrequency-selective analog receiver for the FM band are being developed andintegrated into an existing passive radar system. For the highest possiblesensitivity, filtering in different stages of the receiver is essential.However, this must be evaluated together with the frequency-converting stagesin the overall system context in order not to degrade the signal quality,including through possible imperfections in the analog implementation. Furthermore,attention must also be paid to an optimal balance between circuit complexity,costs and compactness of the receiver. For this purpose, the receiverarchitectures are first examined in system simulations and evaluated regardingthe requirements from the application. This is followed by a prototypeconstruction of the most promising concepts with metrological verification ofthe individual components and evaluation of the entire system in a field test.
-
Integrierte Multibitansteuerung von FeFET-Zellen als Gewichte in Neuronalen Netzen
(Third Party Funds Single)
Term: 1. July 2020 - 31. May 2023
Funding source: Bundesministerium für Bildung und Forschung (BMBF)The fundamental goal of the ANDANTE project is to leverage innovative hardware platforms to build strong hardware / software platforms for artificial neural networks (ANN) and spiking neural networks (SNN) as a basis for future products in the Edge IoT domain, combining extreme power efficiency with robust neuromorphic computing capabilities and demonstrate them in key application areas.
The main objective of ANDANTE is to build and expand the European eco-system around the definition, development, production and application of neuromorphic hardware through an efficient cross-fertilization between major European foundries, chip design, system houses, application companies and research partners, as presented by the European Leader Group (ELG).
-
Peilalgorithmen und gehärtete Hardware (VPX-GPU/FPGA) für den Grenz- und Inlandsschutz
(Third Party Funds Single)
Term: 1. November 2020 - 31. October 2023
Funding source: Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie (StMWi) (seit 2018)Peil-Systeme zurIdentifikation von Funksignale und damit zur Identifikation von unbekanntenFunkquellen sind ein wichtiges Instrument in der Aufklärung und der Ortungelektromagnetischer Aussendungen.
Derrechentechnische Aufwand, der in modernen, hochqualitativen Peilanlagenabgedeckt werden muss, ist generell sehr hoch und erfordert eine entsprechendleistungsfähige und aufwändige Infrastruktur (Rechnerressourcen, Netzwerk,Stromversorgung, Kühlung, Systemintegration). Dies spielt bei stationären Systemen- abgesehen vom Preis - eine eher untergeordnete Rolle, da man dieseInfrastruktur vergleichsweise einfach bereitstellen kann. Bei mobilen Systemenhingegen stößt man sehr schnell an Grenzen, die teils durch die mobilePlattform selbst (u.a. Landfahrzeug, Schiff, Flugzeug) und teils durch denEinsatzfall bestimmt werden. Mit verschiedenen Mitteln und unter Hinnahmegewisser Einschränkungen kann man gute Peilanlagen auch auf mobilen Plattformeneinsetzen, allerdings treibt das den Aufwand und die Kosten immens in die Höhe.
Das Projekt soll einemögliche Implementierung mobiler Peilsysteme analysieren, erforschen underproben. Hierfür werden verschiedene Hardware-Lösungen verifiziert undverglichen. Zudem werden innovative Algorithmen entwickelt, die für mobileSystem mit weniger performanter und weniger effizienter Hardware zugeschnittensind, um ein sowohl mobiles als auch möglichst effizientes System zu erhalten.Hierzu werden in diesem Projekt hochspezialisierte Hardware wie FPGAs oder GPUsverwendet, um die Systeme effizienter, kleiner und leichter zu machen.
-
UHCT - Elektronik und Hochspannung: Ein revolutionärer, ultraleichter Kopf-CT-Scanner für den Einsatz in mobilen Rettungseinheiten und Krankenhäusern
(Third Party Funds Single)
Term: 1. May 2020 - 30. April 2022
Funding source: Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie (StMWi) (seit 2018)
-
5G Connected Sport
(Third Party Funds Single)
Term: 15. June 2019 - 14. December 2021
Funding source: Bayerisches Staatsministerium für Wirtschaft und Medien, Energie und Technologie (StMWIVT) (ab 10/2013) -
Balancing medical technology and ethical requirements in the collection and use of sensor data from wearable and implantable systems for chronic disease monitoring
(FAU Funds)
Term: 1. July 2019 - 30. June 2020In people with chronic diseases, sensors are increasingly being used in or on the body to monitor the patient's state of health and detect deterioration at an early stage. Which data are collected in this context is initially a medical-technical question. However, with the increasing prevalence of mobile data collection in everyday life and the usability of this data by different interest groups, it is clear that this is also an ethical question about data sovereignty. Therefore, it will be investigated how guidelines for the design of implantable or wearable medical sensor systems can be developed so that diagnostic, technical and also ethical requirements are met. The question has two objectives: on the one hand, to derive concrete instructions for medical engineers; on the other hand, the methodological question of the extent to which the different requirements can be weighed up against each other at all: Since incommensurability of norms can already occur within a closed ethical approach (e.g., Principlism), this is to be expected even more strongly for the requirements from different disciplines.
-
Entwurf hochperformanter RF-Komponenten
(Third Party Funds Group – Sub project)
Overall project: Erforschung innovativer Mikrochipkomponenten für höchste Datenübertragungsraten im nächsten Mobilfunkstandard - ForMikro-MassiveData6G
Term: 1. October 2019 - 30. June 2024
Funding source: Bundesministerium für Bildung und Forschung (BMBF)The ever-increasing number of agile Internet users and the concomitant growth in data volumes, driven in particular by the use of mobile Internet, video and cloud streaming services ("streaming on demand"), are already causing bandwidth bottlenecks in existing data and mobile communication systems. The MassiveData6G project aims to address the emerging bandwidth constraints in infrastructure to provide at least 100 Gbps per mobile user in the future. The required low-power and low-cost 140 GHz transceiver uses a MIMO architecture with at least 5 GHz signal bandwidth and high spectral efficiency (512/1024 QAM signal modulation). In addition, to address the mass market, this project uses a low cost, low power 22-nanometre FDSOI (Fully Depleted Silicon On Insulator) CMOS technology (22FDX), which not only allows a high performance implementation of the digital signal processing components, but is also perfectly suited for the 140 GHz RF components.
-
Flexible Elektronisch-Photonisch Integrierte Sensor Plattform [EPIC-Sense]
(Third Party Funds Single)
Term: 1. February 2019 - 31. January 2022
Funding source: Deutsche Forschungsgemeinschaft (DFG) -
RF Transceiver Functionalities from Aggressively Scaled Metal Oxide TOLAE Technologies
(Third Party Funds Group – Sub project)
Overall project: High Frequency Flexible Bendable Electronics for Wireless Communication Systems
Term: 1. June 2019 - 31. May 2022
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
URL: https://fflexcom.de/Alternating-Contactthin-film transistors (ACTFTs) provide new degrees of freedom for deviceoptimization and deployment. This project specifically aims at providingcost-effective implementation of flexible RF circuits through the use of shortchannel ACTFTs with self-aligned contacts. With the Chair of Electron Devicesand the Institute of Electronics Engineering of the FAU Erlangen-Nuremberg, tworenowned institutes of semiconductor electronics and RF circuit technology workhand in hand on the integrated development of RF circuits and systems. Based onmetal oxide ACTFTs, key components of receivers and transmitters (e.g. lownoise amplifiers, oscillators, or mixers) are implemented on flexiblesubstrates. New perspectives for thin, flexible applications in industrial,consumer and textile / wearable electronics are presented.
-
Radarsysteme bei 140 GHz in 22 nm FDSOI CMOS für genaue Gestenerkennung mit kompakten Abmessungen, hoher Energieeffizienz und digitaler Signalgenerierung
(Third Party Funds Single)
Term: 1. October 2019 - 30. June 2024
Funding source: Bundesministerium für Bildung und Forschung (BMBF)Millimeter-wave radars are insensitive to the environment and, because of that, essential in automatic imaging like gesture recognition. Unlike the usual frequency-modulated continuous-wave (FMCW) waveform, phase-modulated continuous-wave (PMCW) radars use binary phase-shift keying (BPSK) modulated signals that are digitally processed in the receiver. However, as their range resolution depends on the bandwidth, higher frequency bands must be used for the desired application. In the REGGAE project, the LTE will develop an integrated PMCW radar transmitter operating in the D-band at a center frequency of 140 GHz and a bandwidth of 25 GHz. The circuits will be realized in an advanced 22 nm fully-depleted silicon on insulator (FDSOI) technology that exhibits state-of-the-art millimeter-wave performance combined with competitive digital cells. In cooperation with our project partners from KIT and TUD, we will realize a complete demonstrator featuring four transmit, and eight receive channels capable of recognizing hand gestures.
-
Vielantennensendeempfänger mit effizienter Hardware
(Third Party Funds Single)
Term: 1. June 2019 - 31. May 2021
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)Efficient Implementation of Massive MIMO Systems
-
Echtzeitsignalverarbeitung verteilter Radarsysteme im Bereich des autonomen Fahrens
(Third Party Funds Group – Sub project)
Overall project: Programmable Systems for Intelligence in Automobiles
Term: 16. June 2018 - 30. April 2021
Funding source: Bundesministerium für Bildung und Forschung (BMBF)Am 1. Mai 2018 startete das Forschungs- und Innovationsprojekt PRYSTINE, unter gemeinsamer Finanzierung der Europäischen Union durch ECSEL und den nationalen Regierungen der ECSEL-Mitgliedstaaten. Der Lehrstuhl für Technische Elektronik repräsentiert im Konsortium von über 50 europäischen Partnern die FAU.
Unter den tatsächlichen Trends, die die Gesellschaft in den kommenden Jahren beeinflussen werden, zeichnet sich das autonome Fahren insbesondere durch das Potenzial aus, die Automobilindustrie, wie wir sie heute kennen, zu verändern. In der Folge wird dies auch die Halbleiterindustrie stark beeinflussen und neue Marktchancen eröffnen, da Halbleiter als „Enabler“ für autonome Fahrzeuge eine unverzichtbare Rolle spielen. Autonomes Fahren wurde als eine der wichtigsten Voraussetzungen für die Bewältigung der gesellschaftlichen Herausforderungen einer sicheren, sauberen und effizienten Mobilität identifiziert. Dazu ist ein ausfallsicheres Verhalten unerlässlich, um sicherheitskritische Situationen aus eigener Kraft zu bewältigen. Dies wird mit heutigen Ansätzen auch aufgrund fehlender zuverlässiger Umgebungswahrnehmung und unzureichender Sensorfusion nicht erreicht.
Im Projekt mit dem Titel „Programmable Systems for Intelligence in Automobiles“ (PRYSTINE) geht es im Allgemeinen darum, eine robuste und ausfallsichere rundum Wahrnehmung der Umgebung von Fahrzeugen zu realisieren. Mittels robuster Sensordatenfusion von Radar-, LiDAR- und Kameradaten, sowie ausfallsicheren Steuerungsfunktionen, soll möglichst sicheres autonomes Fahren in städtischer und ländlicher Umgebung ermöglicht werden.
Am Lehrstuhl für Technische Elektronik soll im Rahmen von PRYSTINE eine robuste Umwelterfassung und Bildgebung mittels MIMO Radarsensoren erfolgen. Hierbei sollen auch unterschiedliche Einflüsse und Szenarien, wie zum Beispiel Funkinterferenzen oder die Detektion im Nahfeld für Automobilradare betrachtet werden. Des Weiteren sollen Teile der traditionellen Radarsignalverarbeitungskette, von der Interferenzreduktion, bis hin zu Detektion, Klassifikation und Tracking von Verkehrsteilnehmern, schrittweise durch maschinelles Lernen ersetzt werden.
Vollständige Informationen über dieses Projekt finden Sie auf der offiziellen Website: www.prystine.eu -
Integration Radar-basierter Kommunikation in heterogene Fahrzeugnetze für die kooperative Interaktion von Automobilen (RADCOM-HETNET)
(Third Party Funds Single)
Term: 1. September 2018 - 31. August 2020
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH) -
Interaktive, immersive Verknüpfung von Live-Veranstaltungen an unterschiedlichen Orten unter Nutzung neuer Plattformen und technischer Möglichkeiten
(Third Party Funds Single)
Term: 1. April 2018 - 30. September 2020
Funding source: Bundesministerium für Wirtschaft und Technologie (BMWi) -
Makroskopische Molekulare Kommunikation: Sender- und Empfängerkonzepte für die Informationsübertragung in flüssigen Medien
(Third Party Funds Group – Sub project)
Overall project: Makroskopische Molekulare Kommunikation: Sender- und Empfängerkonzepte für die Informationsübertragung in flüssigen Medien
Term: 1. November 2018 - 31. October 2022
Funding source: Bundesministerium für Bildung und Forschung (BMBF) -
Programmable Systems for Intelligence in Automobiles
(Third Party Funds Group – Sub project)
Overall project: Programmable Systems for Intelligence in Automobiles
Term: 1. May 2018 - 30. April 2021
Funding source: Europäische Union (EU) -
Radarüberwachung und Kommunikation für Qualitätssicherung und Zustandsüberwachung von Rotorblättern
(Third Party Funds Group – Sub project)
Overall project: Radarüberwachung und Kommunikation für Qualitätssicherung und Zustandsüberwachung von Rotorblättern
Term: 1. November 2018 - 31. October 2021
Funding source: Bundesministerium für Wirtschaft und Technologie (BMWi)
-
Abschätzung der technischen Umsetzbarkeit von SUDAC Einheiten (Shared UE-side Distributed Antenna Component) zur Umsetzung der Raum- in die Frequenzdimension im Rahmen des SUDAS Systemansatzes (Shared UE-side Distributed Antenna System)
(Third Party Funds Single)
Term: 2. August 2017 - 2. October 2017
Funding source: Fraunhofer-Gesellschaft
URL: https://www.iis.fraunhofer.de/de/ff/kom/mobile-kom/sudas.html -
Charakterisierung von NB-IoT Modulen
(Third Party Funds Single)
Term: 1. June 2017 - 30. November 2017
Funding source: Industrie -
Computertomographie-System für Röntgen-Abbildungen in Sicherheitsanwendungen
(Third Party Funds Group – Overall project)
Term: 15. August 2017 - 15. October 2019
Funding source: Bayerisches Staatsministerium für Wirtschaft und Medien, Energie und Technologie (StMWIVT) (ab 10/2013) -
Design von Mehrstrahl-Röntgenröhren
(Third Party Funds Group – Sub project)
Overall project: Computertomographie-System für Röntgen-Abbildungen in Sicherheitsanwendungen
Term: 15. August 2017 - 15. October 2019
Funding source: Bayerisches Staatsministerium für Wirtschaft und Medien, Energie und Technologie (StMWIVT) (ab 10/2013) -
Development of a Multiband Doherty Amplifier
(Third Party Funds Single)
Term: 8. March 2017 - 31. December 2017
Funding source: Industrie -
Dynamische Ansteuerung von Hochfrequenzleistungsverstärkern mit breitbandiger, aktiver Lastmodulation
(Third Party Funds Single)
Term: 1. September 2017 - 31. August 2019
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH) -
Erforschung, Entwicklung und Realisierung eines"intelligenten Kabel-Monitoring" Systems für Datenkabel
(Third Party Funds Single)
Term: 1. January 2017 - 31. January 2018
Funding source: Industrie -
High-Performance 5G-mmW-Transceiver mit MIMO- und Beam-Steering-Funktionalität auf Basis einer neuen zukunftsweisenden BiCMOS-Technologie
(Third Party Funds Group – Sub project)
Overall project: High-Performance 5G-mmW-Transceiver mit MIMO- und Beam-Steering-Funktionalität auf Basis einer neuen zukunftsweisenden BiCMOS-Technologie
Term: 1. April 2017 - 31. March 2020
Funding source: Bundesministerium für Bildung und Forschung (BMBF) -
More quality of life and safety for people in need of care: Innovative contactless monitoring of vital parameters
(Third Party Funds Group – Sub project)
Overall project: GUARDIAN
Term: 1. January 2017 - 31. May 2020
Funding source: BMBF / Verbundprojekt
URL: https://www.interaktive-technologien.de/projekte/guardianMotivation
In the care of seriously ill people, the recording of breathing and heartbeat is an important tool for crisis detection. The recording via electrodes and cables that has been necessary up to now is prone to interference and restricts the self-determination and quality of life of those in need of care. The GUARDIAN project aims to enable the contactless and continuous recording of vital parameters.
Goal and strategy
In GUARDIAN, the contactless recording of vital parameters from a distance of several meters using a multimodal high-frequency sensor is being developed. For this purpose, a weak electromagnetic high-frequency signal is emitted and its change is analyzed. Due to the high distance resolution, movements causing respiration and heartbeat can be extracted from the measurement signal and analyzed. In the process, superimposed motion artifacts must be compensated for. GUARDIAN will thus make it possible to detect complaints such as pain and shortness of breath as well as health crises such as cardiac arrhythmias and cardiovascular arrest immediately and automatically. At the same time, the ethical, legal and social issues of the procedure as well as its effects on palliative and intensive care, people in need of care, care professionals and relatives will be intensively investigated.
Innovation and perspective
By using six-port interferometry as a new concept, all body movements can be recorded contactlessly from a distance of up to several meters with a previously unattainable distance resolution in the micrometer range, and respiration and heartbeat can be extracted. The consortium partners see great potential in the technology to be developed for monitoring the health and complaints of people in need of care in hospitals, but also in the outpatient sector in nursing homes and at home.
-
Mehr Lebensqualittät und Sicherheit für schwerkranke Menschen durch Berührungslose Aufzeichnung von Herzschlag und Atmung - klinisch-experimentelle Untersuchungen
(Third Party Funds Group – Sub project)
Overall project: Mehr Lebensqualittät und Sicherheit für schwerkranke Menschen durch Berührungslose Aufzeichnung von Herzschlag und Atmung - klinisch-experimentelle Untersuchungen
Term: 1. January 2017 - 31. May 2020
Funding source: Bundesministerium für Bildung und Forschung (BMBF) -
Mobile Based Animal Tracker (Mobile-BAT)
(Third Party Funds Single)
Term: 1. January 2017 - 30. June 2020
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)This project Mobile-BAT will investigate methods for automated tracking of migration routes of bats based on miniaturized sensing module for low power passive cellular network detection. This module will be mounted to the dorsum of the migrant Noctule Bats and will track the route over one total season with an accuracy which will enable to draw conclusions to migrant and rout selection strategies of the animal. For limiting as far as possible the mobility restrictions of the bat and disturbance of the natural behavior by the localization module, the sensor node has to exhibit a weight below 2 gram including battery, circuitry as well as antenna system and feature a suitable form factor. Due to the required operation time for covering one entire migration period of up to six months concepts have to be found for ensuring the localization from the limited energy resources. The data logger will be manually retrieved and the stored data evaluated after the return of the animal to the initial habitat. The locating of the respective individuals will be supported by automated direction finding and triangulation of a specific low power VHF telemetry signal transmitted by the sensor node after detection of the return to the initial habitat. From the logged cellular base station parameters, the trajectories of the routes chosen have to be extracted. For this goal topographic information will be added to propagation models for mobile phone signals enabling an automated calculation of an estimated signal constellation for any arbitrary coordinate. The stored sensor node data will be mapped to this database and will result in a highly accurate migration route trajectory. The benefit of the proposed methodology is that due to the passive system approach the sensor node is not required to loggin to a certain provider and is therefore able to logg all receivable base station signals in any frequency bands. This will lead to a large amount of analyzed base stations and therefore to calculated position with high accuracy.The project Mobile-BAT will enable fundamental insight into migration strategies of bats. Besides this concrete application it is expeted that the cellular based self-localization will lead to essential findings in the context of wireless sensor networks and internet of things applicable in nearly any country of the world. -
Molecular Communication Systems
(FAU Funds)
Term: 1. January 2017 - 31. December 2019
URL: https://www.idc.tf.fau.de/efi-mcs/Neuentstehende Anwendungen in der Biologie, Nanotechnologie und Medizin machen die Vernetzung von Objekten und Maschinen mit Abmessungen im Nano- und Mikrometerbereich erforderlich. Traditionelle elektromagnetische Ansätze für den Entwurf entsprechender Kommunikationssysteme sind für solch kleine Größenordnungen nicht geeignet. In der Natur jedoch ist die Kommunikation zwischen Nano- und Mikro-Objekten, wie z.B. Bakterien und anderen Zellen, weit verbreitet. Dabei kommen oft Signalmoleküle als Informationsträger zum Einsatz, so dass ein natürliches molekulares Kommunikationssystem entsteht. Das Projekt bündelt die an der FAU vorhandene Expertise auf den Gebieten Elektrotechnik, Biologie, Materialwissenschaften, Mathematik und Nanomedizin, um – ausgehend von in der Natur vorkommenden Mechanismen und Prozessen – synthetische molekulare Kommunikationssysteme zu entwerfen und zu implementieren.
-
RADiation and reliability challenges for electronics used in Space, Avionics, on the Ground and at Accelerators
(Third Party Funds Group – Sub project)
Overall project: RADSAGA
Term: 1. March 2017 - 28. February 2021
Funding source: Innovative Training Networks (ITN)Reliability and radiation damage issues have a long and important history in the domain of satellites and space missions. Qualification standards were established and expertise was built up in space agencies (ESA), supporting institutes and organizations (CNES, DLR, etc.) as well as universities and specialized companies. During recent years, radiation concerns are gaining attention also in aviation, automotive, medical and other industrial sectors due to the growing ubiquit…
-
Thin-Film Transistors with Novel Architecture for RF Circuits and Systems
(Third Party Funds Group – Sub project)
Overall project: SPP 1796: High Frequency Flexible Bendable Electronics for Wireless Communication Systems (FFLexCom)
Term: 1. June 2016 - 30. May 2019
Funding source: DFG / Schwerpunktprogramm (SPP)In state of the art thin-film-transistors (TFTs), both source and drain electrodes are placed at the same side or interface of the semiconductor layer. Positioning the two contacts on opposite interfaces of the semiconductor in an Alternating Contact TFT (ACTFT) enables new degrees of freedom for device design, optimization, and operation. The ability to enable short channel lengths is explored for application in radio frequency (RF) circuitry in this project.Two research groups of FAU Erlangen Nuremberg being experts in device technology (Chair of Electron Devices) and RF circuits engineering (Institute of Electronics Engineering) join forces to cover the integrated development of ACTFTs towards basic RF building blocks and systems based on flexible metal oxide TFTs. Studies on device physics, RF behavior, and novel circuit concepts will open perspectives for the use of large area, thin, and bendable TFT technologies in future industrial, consumer, and wearable electronics. -
FluFuPa
(Third Party Funds Single)
Term: 2. December 2016 - 31. December 2017
Funding source: Industrie -
Programme Making Special Events - Next Generation
(Third Party Funds Single)
Term: 1. October 2016 - 31. March 2018
Funding source: Bundesministerien -
Stationäre digitale Brust-Tomosynthese für Brustkrebs Vorsorgeuntersuchung - Simulation
(Third Party Funds Single)
Term: 1. June 2016 - 31. May 2018
Funding source: Bayerisches Staatsministerium für Wirtschaft und Medien, Energie und Technologie (StMWIVT) (ab 10/2013)
-
Interferometer-MMIC und Sensorsystementwurf
(Third Party Funds Group – Sub project)
Overall project: Sichere und interaktive Steuerung von Produktionsanlagen durch vernetzte Umfeldsensorik
Term: 1. January 2015 - 31. December 2017
Funding source: BMBF / Verbundprojekt
-
Messsystem zur Betriebszustandsanalyse von Windkraftanlagen
(Third Party Funds Single)
Term: 1. September 2014 - 30. November 2017
Funding source: Bayerisches Staatsministerium für Wirtschaft und Medien, Energie und Technologie (StMWIVT) (ab 10/2013) -
Multiband Doherty 2
(Third Party Funds Single)
Term: 21. March 2014 - 31. December 2016
Funding source: Industrie
-
ICON+PA - Switch Mode Power Amplifier
(Third Party Funds Single)
Term: 1. September 2013 - 28. February 2014
Funding source: Industrie
-
CoMoRa
(Third Party Funds Single)
Term: 1. March 2012 - 31. December 2014
Funding source: Industrie -
RTG 1773: Heterogeneous Image Systems
(Third Party Funds Group – Overall project)
Term: 1. October 2012 - 31. March 2017
Funding source: DFG / Graduiertenkolleg (GRK)Systeme zur Verarbeitung, Erzeugung und übertragung digitaler Bilder (Bildsysteme) unterliegen sehr oft harten Anforderungen an Rechenleistung, Latenz, Durchsatz und Kosten. Typische Beispiele sind die medi-zinische Bildverarbeitung, Computerspiele oder die Videokompression in Camcordern. Um diese Anforde-rungen zu erfüllen, werden oft dedizierte Hardware-Beschleuniger eingesetzt als auch Grafikprozessoren (GPUs) oder digitale Signalprozessoren (DSPs). Die entstehenden Bildsysteme sind in zweierlei Hinsicht heterogen. Zum einen ist innerhalb eines Systems die Berechnung auf mehrere verschiedenartige Kompo-nenten verteilt, zum anderen gibt es eine große, heterogene Menge an Architekturen, auf denen unter-schiedliche Bildanwendungen laufen können und sollen. Beide Arten von Heterogenität führen nun zu sehr interessanten und wichtigen Forschungsfragestellungen, die in dem Graduiertenkolleg erforscht werden sollen. Dies betrifft im Wesentlichen drei Bereiche: dedizierte Hardware-Architekturen für Bildsysteme, Werkzeuge und Methoden für die Programmierung heterogener Bildsysteme, sowie Anwendungen und Algorithmen für heterogene Bildsysteme. Bildsysteme haben in Forschung und Praxis eine große Bedeutung. Ihre Planung, Entwicklung und Reali-sierung erfordert themenübergreifendes und interdisziplinäres Wissen zu Soft- und Hardware, Methoden- und Werkzeugentwurf, sowie zur Algorithmenentwicklung. Das Thema eignet sich daher hervorragend für ein Graduiertenkolleg, gerade am Standort Erlangen. Die Doktoranden des Kollegs erhalten in ihrem Studi-enprogramm eine breit gefächerte Ausbildung, die anschließend in der Dissertation in speziellen Problem-stellungen vertieft wird. Postdoktoranden mit größerem fachlichen überblick bilden eine fachliche Klammer. Sie qualifizieren sich interdisziplinär, sammeln aber vor allem auch Lehrerfahrung. Die bereits bestehende tiefe Verankerung der Thematik in der Lehre ermöglicht die Einbeziehung begabter Studenten in das For-schungsprogramm. Schließlich bietet Erlangen ein industrielles Umfeld, das durch eine direkte Beteiligung am Graduiertenkolleg wichtige Impulse für die Forschung liefern wird, aber auch von neuen Ideen aus dem Graduiertenkolleg sowie hochqualifizierten Absolventen profitieren wird.
-
Miniaturized, Reconfigurable Sensor Node with Localization Functionality for Measurement Data Acquisition and Contact Monitoring between Bats
(Third Party Funds Group – Sub project)
Overall project: FOR 1508: Dynamisch adaptierbare Anwendungen zur Fledermausortung mittels eingebetteter kommunizierender Sensorsysteme
Term: since 1. August 2012
Funding source: DFG / Forschungsgruppe (FOR)Zur Erforschung des Verhaltens von Fledermäusen soll im Projekt ein Sensorsystem entworfen werden. Diese Sensoren müssen auf der Fledermaus angebracht werden, um die Fledermaus im Flug zu orten. Damit sie unbeeinträchtigt ist, muss der Sensorknoten leicht und sehr kompakt sein. In dem hier vorgestellten Teilprojekt soll die Modul-Integration der miniaturisierten drahtlosen Sensorknoten mit Ortungsfunktionalität erfolgen. Für den avisierten Einsatz auf einer fliegenden Fledermaus sind dabei die wichtigsten Randbedingungen ein minimales Gesamtgewicht (max. 2 Gramm inklusive Batterie, Schaltungsträger und Antenne) und ein Formfaktor, der die Fledermaus in ihren natürlichen Bewegungen nicht einschränkt. Für dieses Teilprojekt stellen diese beiden Vorgaben eine große Herausforderung an den Entwurf einer Multiband-Antennenlösung dar, die sowohl in ihrer Geometrie stark verkürzt als auch dreidimensional an den Körper der Fledermaus anzupassen ist. Auch die Aerodynamik muss hierbei berücksichtigt werden. Neben einer Ortungsfunktionalität, die durch Integration des in TP 8 entworfenen Ortungs-ICs realisiert wird, soll auch eine Kommunikation zwischen verschiedenen Sensorknoten möglich sein. Um die Lebensdauer der eingesetzten Batterie zu maximieren und das zu entwerfende Energiemanagement des Moduls zu entlasten sollen energieeffiziente Übertragungsprotokolle untersucht werden. Durch die Staffelung der Arbeitspakete wird nach einer Realisierung der Grundfunktionalität im ersten Schritt die Komplexität des mobilen Sensorknotens durch Hinzunahme weiterer Funktionen nach und nach erhöht und gipfelt zum Projektende in einem leichten und miniaturisierten drahtlosen Sensorknoten mit Lokalisierungs- und Kommunikationsschnittstelle für den Einsatz auf einer fliegenden Fledermaus. -
Multiphysical circuit design based on microacoustic RF-MEMS components
(Third Party Funds Group – Sub project)
Overall project: FOR 1522: Multiphysikalische Synthese und Integration komplexer Hochfrequenz-Schaltungen
Term: since 1. June 2012
Funding source: DFG / Forschungsgruppe (FOR)Teilprojekt 2 beschäftigt sich mit der multiphysikalischen Modellentwicklung und Optimierung mikroakustischer MEMS‐Komponenten. Dabei werden die Schwerpunkte auf die Charakterisierung und Simulation verschiedener BAW‐Komponenten gelegt. Je nach Einsatz der jeweiligen Komponenten in dem im Rahmen der gesamten Forschergruppe zu entwerfenden mikroelektromechanischen Frontend wird der Fokus vor allem auf die Leistungsverträglichkeit, das Temperaturverhalten und die Analyse von Nichtlinearitäten gerichtet, da starke Temperatureinflüsse und hohe Leistungen zu unerwünschten Frequenzverschiebungen, Schädigungen und Alterung der Bauelemente führen. Parallel dazu werden Schnittstellen mit den anderen Teilprojekten der Forschergruppe MUSIK identifiziert und entwickelt, um elektrische und thermische Wechselwirkungen zwischen den Bauelementgruppen berücksichtigen sowie die komplementären Modellansätze zu einer ganzheitlichen und durchgängigen Modellierung der resultierenden HF‐MEMS‐Schaltung zusammenführen zu können. Aus der Bauteilanalyse gewonnene Daten führen zu Modellen für die Beschreibung des temperaturabhängigen übertragungsverhaltens, welche anschließend bei der Optimierung des Entwurfs eingesetzt werden. In einem weiteren Schritt wird die thermische Interaktion zwischen wichtigen Komponenten des MEMS‐Funksystems wie Oszillatoren, Leistungsverstärkern und passiven Komponenten erforscht. -
Systemsimulation und Integrationsanalyse nicht-idealer HF-MEMS
(Third Party Funds Group – Sub project)
Overall project: FOR 1522: Multiphysikalische Synthese und Integration komplexer Hochfrequenz-Schaltungen
Term: since 1. June 2012
Funding source: DFG / Forschungsgruppe (FOR)Um den ganzheitlichen Modellierungs‐ und Simulationsansatz der Forschergruppe MUSIK auf allen Systemebenen zu gewährleisten, werden in Teilprojekt 4 die Auswirkungen nichtlinearer Eigenschaften von MEMS‐Bauelementen auf die Leistungsmerkmale eines HF‐übertragungssystems untersucht. Dabei gilt es nicht nur, schwer erkennbare Ursachen parasitärer Einflüsse auf die Gesamtschaltung zu beseitigen; vielmehr kann das Potential für die gezielte Nutzung nichtlinearer Effekte über die Grenzen des einzelnen Bauelements hinaus nutzbar gemacht werden. Es gilt daher, die parameterreduzierte Verhaltensbeschreibung multiphysikalischer Zusammenhänge (mechanisch, thermisch, elektrostatisch/ elektrodynamisch) aus der Zusammenarbeit mit Teilprojekt 1 in geeigneter Form als Modell für hardwarenahe Kommunikationssystem‐Simulatoren umzusetzen. Verglichen mit einer parallel zu erarbeitenden konventionellen Halbleiter‐Implementierung der entsprechenden Komponenten werden die spezifischen Vor‐ und Nachteile der mikroelektronischen und mikroelektromechanischen Varianten aus dem Blickwinkel der übertragungssystem‐Eigenschaften und ‐Architekturoptimierung vergleichend analysiert. Als zusätzliche Resultate werden dank der gemeinsam erarbeiteten Modelle und Erfahrungen Parameterraumstudien, neue Funktionalitäten durch Synthese bestehender MEMSBauelemente mit innovativen Konzepten, sowie eine technologische Umsetzung ermöglicht.
-
Innovatives nano-elektronisches Mikrowellenmodul für nicht-invasive medizinische Sensorik für mobile AAL-Anwendungen
(Third Party Funds Group – Sub project)
Overall project: Nanoelektronics for Mobile AAL-Systems - MAS
Term: 1. April 2010 - 30. September 2013
Funding source: Bundesministerium für Bildung und Forschung (BMBF)Das Vorhaben MAS erforscht nano-elektronische Komponenten und Systeme für AAL-Anwendungen (Gesundheit/Wellness/Patienten-Monitoring). Hauptziele: Realisierung geschlossener Sensor Service Kommunikationsketten (AAL-Wertschöpfungskette) sowie die Erforschung und Umsetzung einer AAL-Technologie-Plattform. Anwendungs-orientierten Demonstratoren (Referenz-Applikationen) werden realisiert und im medizinischen Umfeld (Telemedizin/Health Service Provider) erprobt. Teilziele: Spezifikation von UseCases und Anwendungen; Erforschung und Bereitstellung innovativer Sensorsysteme; standardisierte Nahfeld-Komunikationsschnittstellen sowie UltraLowPower-Terminals (WireLess). Ergänzend werden Integrationstechnologien im medizinischen Umfeld und drahtlose Energieübertragung untersucht und erprobt. Die Arbeiten des Lehrstuhls für Technische Elektronik der Friedrich-Alexander Universität Erlangen-Nürnberg im Rahmen des MAS Verbundprojektes sind auf drei Jahre angelegt. Während dieser Zeit setzt sich der Lehrstuhl für Technische Elektronik mit neuartigen nano-elektronischen Konzepten für Sensorik und Schaltungstechnik auseinander. Das Hauptaugenmerk liegt auf Anwendungen in der Medizintechnik und für Ambient-Assisted-Living.
-
Nanoelectronics for Mobile Ambient Living (AAL) Systems
(Third Party Funds Group – Sub project)
Overall project: Nanoelectronics for Mobile Ambient Living (AAL) Systems
Term: 1. April 2010 - 31. March 2013
Funding source: Sonstige EU-Programme (z. B. RFCS, DG Health, IMI, Artemis), Industrie, BundesministerienThe objective of MAS is to develop a common communication platform and nanoelectronics circuits for health and wellness applications to support the development of flexible, robust, safe and inexpensive mobile AAL systems, to improve the quality of human life and improve the well-being of people. In this context, reference architectures will be defined in order to enable system development from devices to complete mobile AAL systems, and to enable cooperative clusters of such systems for specific environments and applications. MAS focus on the development of an integrated approach for the areas of health monitoring and therapy support at home, and mobile health, wellness and fitness. The systems are intended for remote patient supervision using multi parameter biosensors and secure communication networks, and health & wellness monitoring in the home environment. The mixed healthcare and consumer markets will be targeted with MAS-platform-based devices with five application demos: 1: Health and Activity Monitor 2: Point of Care Terminal and Gateway 3: Cardiovascular Monitor 4: Diabetes Monitor 5: Mobile Cardiotocography. -
SmartSensorsB: Investigation of a millimeter wave sensor for non-invasive blood parameter detection
(Third Party Funds Group – Sub project)
Overall project: Spitzencluster Medical Valley, Verbund Intelligente Sensori
Term: 1. July 2010 - 30. June 2014
Funding source: BMBF / SpitzenclusterIn the "Smart Sensors B" research project, work is being done within the framework of the Medical Valley Leading Edge Cluster on a high-frequency-based sensor node for non-invasive measurement of blood parameters. The electrical properties undergo a characteristic change depending on the concentration. These changes can be detected by non-invasive means using integrated high-frequency circuits, whereby costs are getting lower and lower all the time. In future, this could enable portable, automatable long-term measurement of various blood parameters.