Albert-Marcel Schrotz
Albert-Marcel Schrotz, M.Sc.
Curriculum vitae
Albert-M. Schrotz successfully completed his studies in Mechatronics (B.Sc.) and Electrical Engineering, Electronics and Information Technology at FAU Erlangen-Nürnberg in March 2019 with a Master of Science (M. Sc.) degree. Since May 2019, he has been a research assistant at the Chair of Technical Electronics in the RFMXIS group. Since February 2021, he has been team leader of the MXIS team, which has been operating as an independent group since July 2022. Since July 2022 he is group leader of the Mixed-Signal-Integrated-Systems (MXIS) group.
Areas of Interest
- RF Chipdesign (upto 325 GHz)
- RF System Engineering
- ADC/DAC Design
- FPGAs
Publications
- Breun, S., Schrotz, A.-M., Koch, M., Issakov, V., & Weigel, R. (2024). A 290-359 GHz Push-Push Signal Source with 1.7 dBm Pmax using Variable Inductance in SiGe BiCMOS Technology. In 2024 IEEE Wireless and Microwave Technology Conference, WAMICON 2024. Clearwater, FL, US: Institute of Electrical and Electronics Engineers Inc..
- Schrotz, A.-M., Breun, S., Schonharl, S., & Weigel, R. (2024). A Digitally Controlled D-Band Phase Shifter for FMCW Radar and RadCom in SiGe BiCMOS. In 2024 IEEE Wireless and Microwave Technology Conference, WAMICON 2024. Clearwater, FL, US: Institute of Electrical and Electronics Engineers Inc..
- Breun, S., Schrotz, A.-M., Dietz, M., Issakov, V., & Weigel, R. (2022). A 268-325 GHz 5.2 dBm Psat Frequency Doubler using Transformer-Based Mode Separation in SiGe BiCMOS Technology. In Proceedings of the 2021 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS) (pp. 1-4).
- Breun, S., Schrotz, A.-M., Dietz, M., Issakov, V., & Weigel, R. (2022). A 295-337 GHz 2.5 dBm Psat Cascode-Based Frequency Doubler in SiGe BiCMOS Technology. In Proceedings of the 2022 IEEE 22nd Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF) (pp. 66-69). Las Vegas.
- Schrotz, A.-M., Breun, S., Issakov, V., Dietz, M., & Weigel, R. (2022). A 220-325 GHz Subharmonic Receiver with 14.8 dB Peak Conversion Gain for FMCW Radar in SiGe BiCMOS Technology. In Proceedings of the IEEE Radio & Wireless Week. Las Vegas.
- Breun, S., Schrotz, A.-M., Dietz, M., Issakov, V., & Weigel, R. (2021). A 314-344 GHz Frequency Doubler with Driving Stage and 1 dBm Psat in SiGe BiCMOS Technology. In Proceedings of the IEEE Radio & Wireless Week. Virtual Conference.
- Breun, S., Völkel, M., Schrotz, A.-M., Dietz, M., Issakov, V., & Weigel, R. (2020). A Low-Power 14% FTR Push-Push D-Band VCO in 130 nm SiGe BiCMOS Technology with -178 dBc/Hz FOMT. In Proceedings of the RWW 2020.
- Carlowitz, C., Vossiek, M., Girg, T., Dietz, M., Schrotz, A.-M., Maiwald, T.,... Berroth, M. (2020). SPARS — Simultaneous Phase and Amplitude Regenerative Sampling. In Rolf Kraemer, Stefan Scholz (Eds.), Wireless 100 Gbps And Beyond. Architectures, Approaches and Findings of German Research Foundation (DFG) Priority Programme SPP1655. (pp. 37-74). Frankfurt/Oder: IHP GmbH, Im Technologiepark 25, Frankfurt (Oder).
- Maiwald, T., Schrotz, A.-M., Kolb, K., Potschka, J., Dietz, M., Hagelauer, A.M., & Weigel, R. (2020). A Technology Independent Synthesis Approach for Integrated mmWave Coupled Line Circuits. In Proceedings of the IEEE Radio and Wireless Symposium. San Antonio, Texas, US.
- Schrotz, A.-M., Maiwald, T., Kolb, K., Breun, S., Dietz, M., Hagelauer, A.M., & Weigel, R. (2019). Design Methodology for Automatically Designed, Integrated Marchand Baluns with Low Insertion Loss at Lowest Phase Imbalance. In Proceedings of the APMC (Asia-Pacific Microwave Conference). Singapur, SG.
- Völkel, M., Schrotz, A.-M., Weigel, R., & Hagelauer, A.M. (2019). A 60-GHz Integrated Radar Transmitter with Multiple Frequency Inputs and Digital Adjustable Gain in a 130-nm BiCMOS Technology. In Proceedings of the IEEE Radio and Wireless Symposium. Orlando, FL, US.